

Anaerobic Co-Digestion of Animal Manure and Agricultural Residues for Biogas Production

Jay J. Cheng (成家杨)

Peking University-Shenzhen Graduate School North Carolina State University

@ 生質能源處理技術研討會・台北 2015年7月17日

Background

- Two big challenges:
 - Energy demand
 - Global climate change

Prediction of Energy Supply and Demand

Source: International Energy Agency

Energy Consumption in US (2008)

Renewable Energy in US (2008)

Quadrillion BTU 7 6.6 6 Quadrillion BTU 5 **biomass** hydroelectric_{3,3} 4 2.7 3 2 0.34 0.07 0.18 0 geothermal solar wind total

Source: US DOE, 2009

Biogas: Energy Cinderella

Bio-ethanol Bio-diesel

Complex processes High cost Low net energy production Expensive to separate

Biogas: Bio-methane Simple process Relatively low cost High net energy production Easy to separate

Lignocellulosic Materials

Structure of Lignocellulosic Biomass

Source: Hopkins, W.G., 1999. Introduction to Plant Physiology, second edition.

John Wiley & Sons, Inc., New York.

Pretreatment

Biogas production vs. Other energy froms

Source: Samson et al. 2009

Biogas Production in Germany

Anaerobic Co-digestion of Animal Manure and Agricultural Residues

agricultural residues: 60-80 : 1

Typical C:N ratio for animal manure:

5-10:1

Sources: Cheng & Liu, 2000; Demirbas, 2008; Hills and Roberts, 1981

Objectives

- Investigate methane production from anaerobic co-digestion of swine manure and corn stover in a completely stirred tank reactor
- Study the effect of pretreatment on methane production from the anaerobic co-digestion

Experimental Setup

- 2 CSTRs
- 14 L working volume
- Temperature: 35 C
- HRT: 25 days

Reactor 1

Reactor 2

Substrates

Swine Wastewater

Corn Stover

Reactor Operation

	Reactor 1 (control)	Reactor 2
Swine Wastewater	560 ml/d	560 ml/d
Corn Stover	No	14 g/d
C:N	2.3:1	10:1

C:N (corn stover) = 52.6 : 1

Results and Discussion

Parameter	Removal efficiency (%)		
	Reactor 1	Reactor 2	
COD	52	53	
TKN	1	10	
NH4-N	-51	15	
Total P	14	14	
TSS	54	58	
VSS	51	58	

Results and Discussion

Biogas Production

Results and Discussion

	Reactor 1 (control)	Reactor 2
Biogas Production (ml/day)	274	3910
Methane %	67.8	50.7
Methane production (ml/day)	186	1982

Results and Discussion

Methane Yield:

Reactor 1 = 0.19 m^3 of CH_4 kg of COD removed

Reactor 2 = 0.18 m³ of CH₄ kg of COD removed

Effect of Pretreatment

Pretreatment method:

Cellulase pretreatment: pH 4.5-7.5; T 35-65° C

Protease pretreatment: pH 7.0-10.0; T 40-80° C

Alkaline pretreatment: 5% of NaOH and 5% of CaO; 6 hours; 21°C

Biogas Production: Cellulase Pretreatment

Biogas Production: Protease Pretreatment

Biogas Production: Alkaline Pretreatment

Biogas Production: Alkaline + Cellulase Pretreatment

Pretreatment	Methane yield increase (%)	
Cellulase	10.40	
Protease	5.50	
Alkaline	21.80	
Alkaline+Cellulase	31.90	

- Corn stover could be substantially degraded to methane in an anaerobic co-digestion with swine manure.
- Addition of corn stover could balance the nutrients and significantly increase methane production.
- Alkaline pretreatment of corn stover could substantially improve methane production of the co-digestion.

Perspective of biogas production

Substrates:

- ✓ Organic wastes from households
- ✓ Sludge from municipal wastewater treatment plants
- Waste food from restaurants, grocery stores, and food manufacturers
- ✓ Animal manure and processing wastes
- ✓ Agricultural residues
- Wastewaters from alcohol and non-alcohol beverage plants

Agricultural Biogas Potential in US

- Agricultural Residues
 - Corn stover:
 460 Million tons (dry)
 - Wheat straw:
 170 Million tons (dry)
 - Cotton stalk:
 27 Million tons (dry)

- Other straws: 89 Million tons (dry)
- Total Ag. Residues: 746 Million tons (dry)

Agricultural Biogas Potential in US

- Annual Animal Manure Production
 (million dry tons)
- Cattle and Calves 177.5
 Hogs and Pigs 23.7
- Chicken 131.7
- Total animal manure production:332.9

Biogas Potential in Mainland China

Organic Waste	Annual Production, ton (dry)/year	CH ₄ potential, m ³ /year
Municipal organic wastes	29.5 x 10°	7.08 x 10 ⁹
Septic feces	0.6 x 10°	0.18 x 10 ⁹
Sewage sludge	2.3 x 10 [°]	0.29 x 10 ⁹
Agricultural residues	600 x 10 [°]	142 x 10 ⁹
Animal manure	710 x 10 [°]	208 x 10 ⁹
Total		357 x 10 ⁹

Thank you!

